

KANTONSSCHULE IM LEE W I N T E R T H U R

MATURITÄTSPRÜFUNGEN 2014

4g

Klasse:

Profile: A/M/MN/N

Lehrperson: Rolf Kleiner

MATHEMATIK in englischer Sprache (immersiv)

Zeit:	3 Stunden 3 hours					
Erlaubte Hilfsmittel:	Grafiktaschenrechner ohne CAS, beliebige Formelsammlung Graphing calculator without CAS, formula booklet of your choice					
Bemerkungen:	Die Prüfung enthält 8 Aufgaben mit 96 Punkten. The exam consists of 8 problems with 96 marks.					
	Lösen Sie jede Aufgabe auf ein separates A4-Blatt. Solve each problem on a separate piece of paper.					
	Schreiben Sie Ihre Lösungswege klar nachvollziehbar auf. Show all your working.					
	Geben Sie numerische Ergebnisse wenn möglich exakt, andernfalls sinnvoll gerundet an. Give exact values for your numerical answers, if possible. Otherwise, round your results appropriately.					

Page 2 of 4

- **1.** [9m] Given is the function $f(x) = x \cdot \ln(x) x^2$.
 - a) Find an expression for f'(x), f''(x), f'''(x), $f^{(4)}(x)$ and $f^{(5)}(x)$ and deduce an expression for the *n*-th derivative of the function *f* for $n \ge 3$.
 - b) Find the *x*-coordinate of the point on the curve of *f* for which the curve is the least steep.
- 2. [15m] Given is the function $f(x) = e^{(x^2)} + e^{-(x^2)} 4$. It has *x*-intercepts at $x \approx \pm 1.15$.
 - a) Show that two steps of Newton's Method with starting value $x_1 = 1$ lead to a good approximation of the positive *x*-intercept of *f*.
 - Let A be the area of the region enclosed between the curve of f and the x-axis.
 - b) Find an approximation of *A* by applying Simpson's Rule (parabola method) with strips of width $\Delta x = \frac{1.15}{2} = 0.575$.
 - c) Find the value of *c* such that the curve of $y = c \cdot x^4 2$ also has *x*-intercepts at $x = \pm 1.15$. Then, use this result to find an approximation for the area *A*.
- 3. [9m] Consider the curve of $y = k \cdot \sin(x)$ for $0 \le x \le \pi$.
 - a) Find the *x*-value for which the value of the gradient of this curve is <u>half</u> of the value of the gradient at $x = \frac{\pi}{8}$.
 - b) The region enclosed between the curve of $y = k \cdot \sin(x)$ and the *x*-axis is rotated about the *x*-axis to form a solid of revolution. The volume of this solid is to be equal to the volume of a sphere with radius $\frac{\pi}{2}$ (see figure).

Find the value of the number k by using your graphing

4. [6m] Find the area of the unbounded region between the curve of $y = \frac{2x^2 - 9}{x^2}$ and its

calculator to evaluate the necessary integral.

horizontal asymptote for $x \ge 3$ by using an antiderivative (see figure, not to scale).

5. [8m] The point *P* lies on the semicircle $y = \sqrt{1 - x^2}$ and the point *Q* has the same *x*-coordinate as *P* but lies on the straight line through the points (0,1) and (1,0) (see figure). Find a simplified expression for the exact value of the greatest possible length of the vertical line segment *PQ* by using differential calculus.

6. [16m] The points A(1,1,1), B(1,4,5) and C(1,-1,-1) are vertices of the parallelogram *ABCD* (see figure).

- a) Find the coordinates of the point *D*.
- b) Find the coordinates of the point of intersection *E* of the two diagonals.
- c) Let *F* be the point on the straight line (*AB*) which is closest to the point *C*. Determine whether *F* lies <u>between</u> the two points *A* and *B* or whether *F* lies <u>outside</u> of the line segment *AB*.
- d) Let *ABCDS* be a pyramid with perpendicular height *SE*. Reminder: *E* is the point of intersection of the diagonals of the parallelogram see part b).
 Find possible coordinates of the point *S* if the volume of the pyramid is 6.
- 7. [16m] Let *S* be a sphere with centre O(1,0,5) and let P(4,0,1) be a point on the surface of the sphere.
 - a) Give a Cartesian equation of the sphere.
 - b) The straight line (*AB*) is given through the points A(4,2,3) and B(4,4,5). Find the points of intersection of this straight line with the sphere.
 - c) Find a Cartesian equation of the tangential plane to the sphere in the point *P*.
 - d) Find the angle between the straight line (*OP*) and the *y*-*z*-plane.
 - e) The sphere *S* intersects the *y*-*z*-plane in a circle. Find the centre and the radius of this circle.

- 8. [17m] Otto is a student who, unfortunately, cheats on tests. The probability that he gets caught is p_F = 1:10 in each of the 7 French tests and p_M =? in each of the 9 Maths tests of the school year.
 - a) Find the probability that Otto will be caught ini) none of the 7 French tests, ii) in at least one of the 7 French tests.
 - b) Determine p_M so that the probability of not getting caught in any of the 9 Maths tests is greater than 80%.
 - c) In French, 3 hours of extra work are assigned for each test on which a student is found cheating. In Maths, it is 2 hours of extra work. Find the expected total number of hours of extra work for Otto in French and Maths in the course of the school year if p_M = 0.15.

Let p be the probability that a randomly chosen student has been cheating.

d) Assume p = 0.25. Find the probability that in a randomly chosen class with 18 students not more than two students have been cheating.

At *Im Luv High School* an anonymous survey was conducted to find an estimate of *p*. Students were asked to roll a die secretly and then, <u>if the die showed 5 or 6</u>, to give an <u>untrue answer</u>, i.e. to *say* that they had been cheating although they had always been honest, and vice versa. <u>If the die showed 1, 2, 3 or 4</u>, however, the students were asked to <u>answer the question truthfully</u>. It is assumed that all students followed these instructions.

- e) Explain, in a sentence, the purpose of throwing a die before answering.
- f) 75 out of 180 students replied that they had been cheating. Show, using a tree diagram, that this leads to an estimate of p = 0.25.
- g) Find the probability, using the information of part f), that a student who *said* that he had been cheating *actually* never cheated.

End of Examination

2. a)
$$f'(x) = 2xe^{(x^2)} - 2xe^{-(x^2)} \xrightarrow{[2]}; x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \Rightarrow x_{n+1} = x_n - \frac{e^{(x_n^2)} + e^{-(x_n^2)} - 4}{2x_n \cdot e^{(x_n^2)} - 2x_n \cdot e^{-(x_n^2)}} \xrightarrow{[4]} x_1 = 1 \Rightarrow x_2 = 1.1944 \xrightarrow{[5]} \Rightarrow x_3 = 1.1512 \quad (\dots \Rightarrow x = 1.1476) \Rightarrow x_n \approx 1.15 \xrightarrow{[6]} \xrightarrow{[6]} x_n \approx 1.15$$

b)
$$A \approx 2 \cdot \left| \frac{1.15 - 0}{3 \cdot 2} \cdot \left(-2 + 4 \left(e^{0.575^2} + e^{-0.575^2} - 4 \right) + 0 \right) \right|^{3} = 2 \cdot \left| -1.832 \right| \Rightarrow A \approx 3.66$$

c)
$$c \cdot 1.15^4 - 2 = 0 \xrightarrow{1\downarrow} \Rightarrow c = 1.14 \xrightarrow{2\downarrow}; A \approx 2 \cdot \left| \int_{0}^{1.15} (1.14x^4 - 2) dx \right| \xrightarrow{3\downarrow} \Rightarrow A \approx 3.68 \xrightarrow{5m}$$

3. a)
$$f'\left(\frac{\pi}{8}\right) = 2 \cdot f'(x) \xrightarrow{1 \downarrow} \Rightarrow k \cdot \cos\left(\frac{\pi}{8}\right) = 2k \cdot \cos(x) \xrightarrow{2 \downarrow} x = \arccos\left(\frac{0.924}{2}\right) \Rightarrow x = 1.09$$

b)
$$V_{revol.} = \pi \cdot \int_{0}^{\pi} (k \cdot \sin(x))^2 dx$$
 $\lim_{n \to \infty} ; V_{sphere} = \frac{4\pi}{3} \cdot \left(\frac{\pi}{2}\right)^3 = 16.235 \text{ or } \frac{1}{6}\pi^4$ $\lim_{n \to \infty} ;$
 $\Rightarrow \pi \cdot k^2 \cdot \int_{0}^{\pi} \sin^2(x) dx = 16.235$ $\stackrel{3\downarrow}{\longrightarrow} \Rightarrow \pi \cdot k^2 \cdot 1.57 = 16.235 \Rightarrow k = \pm \frac{\sqrt{3}}{3}\pi \approx \pm 1.8$ $\lim_{n \to \infty} \frac{5m}{3}\pi = 10.235$

4. Horizontal asymptote:
$$y = 2$$
 $[1]$; Area $= \int_{3}^{\infty} \left(2 - \frac{2x^2 - 9}{x^2}\right) dx$ $[3]$ $= \int_{3}^{\infty} \frac{9}{x^2} dx$ $[4]$
 $= \left[-\frac{9}{x}\right]_{3}^{\infty}$ $[5]$ $= 0 - (-3) \Rightarrow A = 3$ [6m]

5. Straight line
$$y = 1 - x$$
 $\downarrow \downarrow$; Goal function $\overline{PQ} = f(x) = \sqrt{1 - x^2} - (1 - x)$ $\downarrow \downarrow$
 $\Rightarrow f'(x) = \frac{-2x}{2\sqrt{1 - x^2}} + 1$ $\downarrow \downarrow$; $f'(x) = 0$: $\frac{-x}{\sqrt{1 - x^2}} + 1 = 0$ $\stackrel{5\downarrow}{\longrightarrow} \Rightarrow \sqrt{1 - x^2} = x \Rightarrow x = \frac{1}{\sqrt{2}}$ $\stackrel{6\downarrow}{\longrightarrow}$
 $\Rightarrow \overline{PQ} = \sqrt{1 - \frac{1}{2}} - \left(1 - \frac{1}{\sqrt{2}}\right) \Rightarrow \overline{PQ} = \sqrt{2} - 1$ $\stackrel{8m}{\longrightarrow}$

6. a)
$$OD = OA + BC$$
 $[1] = \begin{pmatrix} 1\\ 1 \end{pmatrix} + \begin{pmatrix} 0\\ -6 \end{pmatrix} \Rightarrow D(1-4,-5)$ $[2m]$
b) $E = M_{AC} = \begin{pmatrix} x_A + x_C \\ 2 \end{pmatrix}, ... \end{pmatrix} [1] \Rightarrow E(10,0)$ $[2m]$
c) Normal plane to AB through C : $3y + 4z + 7 = 0$ $[2m]$; line (AB) : $\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 1\\ 1 \end{pmatrix} + \begin{pmatrix} 0\\ 3 \end{pmatrix}$ $[1m]$
Intersection F of line with plane: $3(1+3t) + 4(1+4t) + 7 = 0 \Rightarrow t = -\frac{14}{25} < 0$ $[51]$
 \Rightarrow because $t \notin [0,1]$: point F lies outside of the line segment AB $[5m]$
d) $V = \frac{G \cdot h}{3} = 6 \Rightarrow h = \overline{SE} = \frac{18}{G}$ $[1m]$; $G = [AB \times \overline{AD}]$ $[1] = [\begin{pmatrix} 0\\ 3\\ 4 \end{pmatrix} \times \begin{pmatrix} 0\\ -5\\ -6 \end{pmatrix}] = 2$ $[2] = -\begin{bmatrix} 2\\ 0\\ 0 \end{pmatrix} = 2$ $[3]$
 $\Rightarrow h = \frac{18}{G} = 9$ $[4]$; with $E(1,0,0)$: $\overline{OS} = \begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix} \Rightarrow S_1(10,0,0)$, $S_2(-8,0,0)$ $[5m]$
7. a) $r = \overline{OP} = \sqrt{3^2 + 0^2 + (-4)^2} = 5 \Rightarrow (x-1)^2 + y^2 + (z-5)^2 = 25$ $[2m]$
b) line (AB) : $\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 4\\ 3\\ 3 \end{pmatrix} + t \begin{pmatrix} 0\\ 2\\ 3 \end{pmatrix} = 1 \Rightarrow$ points of intersection: $D_1(4,4,5)$, $D_2(4,0,1)$ $[4m]$
c) normal vector $\overline{OP} = \begin{pmatrix} 3\\ 0\\ -4 \end{pmatrix} \Rightarrow$ tangential plane: $[3x - 4z - 8 = 0$ $[2m]$
d) $\varphi = \arcsin \frac{\overline{OP} \cdot \overline{A_{R}}}{\overline{OP} \cdot \overline{A_{R}}} = 14 = \arcsin \frac{\begin{pmatrix} 3\\ 0\\ -4 \end{pmatrix} \circ \begin{pmatrix} 0\\ 0\\ -4 \end{pmatrix}} = 4 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{4m}{5} = 3 \operatorname{cosin} \frac{3}{5} = 3$

8. a) i)
$$0.9^7 = 0.4783 \approx 47.8\%$$
 im; ii) $1 - 0.9^7 = 0.5217 \approx 52.2\%$ im
b) $(1-p)^9 > 0.80 \Rightarrow p < 1 - \sqrt[9]{0.80} = 0.02449$
 $\Rightarrow \text{ If } p < 2.4\%, \text{ then } P(\text{never getting caught}) > 80\%$ im
c) $E = 7 \cdot 3 \cdot \frac{1}{10} + 9 \cdot 2 \cdot 0.15 = 2.1 + 2.7 \Rightarrow 4.8 \text{ h extra work to be expected}$ im
d) $B_{18,0.25}(X \le 2)$ if $= 0.75^{18} + 18 \cdot 0.25 \cdot 0.75^{17} + (\frac{18}{2}) \cdot 0.25^2 \cdot 0.75^{16}$ if $= 0.005638 + 0.033826 + 0.095841 = 0.1353 = 13.53\%$ im

e) Students know that their answers do not allow any conclusions to be drawn regarding their true actions. So, even if a student might not want to admit to cheating, he may – in this survey – hesitate less to say: "Yes, I have been cheating", because he knows that this answer does not mean that he actually has been cheating.

Grading Scale and Results – 4g (Immersion) – Summer 2014													
Grade	6	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1.0		
Number of Marks	75	67.5	60	52.5	45	37.5	30	22.5	15	7.5	0		
Number of Students	2	2	1	4	1	5	3	3	1	1	0		